Durable Nano-Flower Structured Foam Coupled with Electrically-Driven in Situ Aeration Enable High-Flux Oil/Water Emulsion Separation with Dynamic Antifouling Ability

Small. 2024 Apr 26:e2400205. doi: 10.1002/smll.202400205. Online ahead of print.

Abstract

The conventional membranes used for separating oil/water emulsions are typically limited by the properties of the membrane materials and the impact of membrane fouling, making continuous long-term usage unachievable. In this study, a filtering electrode with synchronous self-cleaning functionality is devised, exhibiting notable antifouling ability and an extended operational lifespan, suitable for the continuous separation of oil/water emulsions. Compared with the original Ti foam, the in situ growth of NiTi-LDH (Layered double hydroxide) nano-flowers endows the modified Ti foam (NiTi-LDH/TF) with exceptional superhydrophilicity and underwater superoleophobicity. Driven by gravity, a rejection rate of over 99% is achieved for various emulsions containing oil content ranging from 1% to 50%, as well as oil/seawater emulsions. The flux recovery rate exceeds 90% after one hundred cycles and a 4-h filtration period. The enhanced separation performance is realized through the "gas bridge" effect during in situ aeration and electrochemical anodic oxidation. The internal aeration within the membrane pores contributes to the removal of oil foulants. This study underscores the potential of coupling foam metal filtration materials with electrochemical technology, providing a paradigm for the exploration of novel oil/water separation membranes.

Keywords: antifouling; conductive membrane; in situ aeration; membrane modification; oil/water separation.