A Distortion Correction Method Based on Actual Camera Imaging Principles

Sensors (Basel). 2024 Apr 9;24(8):2406. doi: 10.3390/s24082406.

Abstract

In the human-robot collaboration system, the high-precision distortion correction of the camera as an important sensor is a crucial prerequisite for accomplishing the task. The traditional correction process is to calculate the lens distortion with the camera model parameters or separately from the camera model. However, in the optimization process calculate with the camera model parameters, the mutual compensation between the parameters may lead to numerical instability, and the existing distortion correction methods separated from the camera model are difficult to ensure the accuracy of the correction. To address this problem, this study proposes a model-independent lens distortion correction method based on the image center area from the perspective of the actual camera lens distortion principle. The proposed method is based on the idea that the structured image preserves its ratios through perspective transformation, and uses the local image information in the central area of the image to correct the overall image. The experiments are verified from two cases of low distortion and high distortion under simulation and actual experiments. The experimental results show that the accuracy and stability of this method are better than other methods in training and testing results.

Keywords: camera calibration; image restoration; lens distortion correction; model-independent method.