Construction of TiO2/CuPc Heterojunctions for the Efficient Photocatalytic Reduction of CO2 with Water

Molecules. 2024 Apr 22;29(8):1899. doi: 10.3390/molecules29081899.

Abstract

Utilizing solar energy for photocatalytic CO2 reduction is an attractive research field because of its convenience, safety, and practicality. The selection of an appropriate photocatalyst is the key to achieve efficient CO2 reduction. Herein, we report the synthesis of TiO2/CuPc heterojunctions by compositing CuPc with TiO2 microspheres via a hydroxyl-induced self-assembly process. The experimental investigations demonstrated that the optimal TiO2/0.5CuPc photocatalyst exhibited a significantly enhanced CO2 photoreduction rate up to 32.4 μmol·g-1·h-1 under 300 W xenon lamp irradiation, which was 3.7 times that of the TiO2 microspheres alone. The results of photoelectrochemical experiments indicated that the construction of the heterojunctions by introducing CuPc effectively promoted the separation and transport of photogenerated carriers, thus enhancing the catalytic effect of the photocatalyst.

Keywords: CO2 reduction; TiO2/CuPc; charge separation; heterojunction; photocatalysis.