Secondary Atomization and Micro-Explosion Effect Induced by Surfactant and Nanoparticles on Enhancing the Combustion Performance of Al/JP-10/OA Nanofluid Fuel

Molecules. 2024 Apr 16;29(8):1806. doi: 10.3390/molecules29081806.

Abstract

Aluminum/tetrahydrodicyclopentadiene/oleic acid (Al/JP-10/OA) nanofluid fuel is considered a potential fuel for aircraft powered by aviation turbine engines. However, an optimized formula for an Al/JP-10/OA system inducing a secondary atomization and micro-explosion effect and improving the burning performance needs to be developed. With this aim, in this work, the combustion characteristics of pure JP-10, JP-10/OA, JP-10/Al, and Al/JP-10/OA were experimentally tested, and a comparative analysis was conducted. Specifically, the influence of the surfactant and nanoparticle concentrations on the combustion characteristics of Al/JP-10/OA nanofluid fuel, including the flame structure, the flame temperature, the burning rate, the secondary atomization and micro-explosion effect, etc., were evaluated in detail. The results demonstrate that the addition of OA surfactant and Al nanoparticles had a significant effect on the burning rate of fuel droplets. The OA had an inhibition effect, while the Al nanoparticles had a promotion effect. As both OA and Al nanoparticles were added to the JP-10, the synergetic effect had to be considered. At the optimum ratio of OA to Al for the best suspension stability, there is a critical Al concentration of 1.0 wt.% from promotion to inhibition with increases in the Al concentration. The addition of OA and Al nanoparticles induced the secondary atomization and micro-explosion, resulting in an unsteady combustion and chaotic flame structure. The transient flame temperature of hundreds of Kelvins increased, the high-temperature flame zone widened, and thus, the energy release was elevated. Therefore, the combustion performance and energy release of Al/JP-10/OA nanofluid fuel can be improved through the secondary atomization and micro-explosion effect induced by the surfactant and nanoparticles.

Keywords: aviation fuels; combustion; concentration effect; micro-explosion; nanofluid fuels.