A Temperature Compensation Approach for Micro-Electro-Mechanical Systems Accelerometer Based on Gated Recurrent Unit-Attention and Robust Local Mean Decomposition-Sample Entropy-Time-Frequency Peak Filtering

Micromachines (Basel). 2024 Mar 30;15(4):483. doi: 10.3390/mi15040483.

Abstract

MEMS accelerometers are significantly impacted by temperature and noise, leading to a considerable compromise in their accuracy. In response to this challenge, we propose a parallel denoising and temperature compensation fusion algorithm for MEMS accelerometers based on RLMD-SE-TFPF and GRU-attention. Firstly, we utilize robust local mean decomposition (RLMD) to decompose the output signal of the accelerometer into a series of product function (PF) signals and a residual signal. Secondly, we employ sample entropy (SE) to classify the decomposed signals, categorizing them into noise segments, mixed segments, and temperature drift segments. Next, we utilize the time-frequency peak filtering (TFPF) algorithm with varying window lengths to separately denoise the noise and mixed signal segments, enabling subsequent signal reconstruction and training. Considering the strong inertia of the temperature signal, we innovatively introduce the accelerometer's output time series as the model input when training the temperature compensation model. We incorporate gated recurrent unit (GRU) and attention modules, proposing a novel GRU-MLP-attention model (GMAN) architecture. Simulation experiments demonstrate the effectiveness of our proposed fusion algorithm. After processing the accelerometer output signal through the RLMD-SE-TFPF denoising algorithm and the GMAN temperature drift compensation model, the acceleration random walk is reduced by 96.11%, with values of 0.23032 g/h/Hz for the original accelerometer output signal and 0.00895695 g/h/Hz for the processed signal.

Keywords: GRU; MEMS accelerometer; RLMD; attention; temperature drift compensation.

Grants and funding

This work was supported in part by the National Natural Science Foundation of China under grant U2230206, in part by the National Key Research and Development Program of China under grant 2022YFB3205000, and in part by the Fundamental Research Program of Shanxi Province under grant 20210302123020.