Darunavir Nanoformulation Suppresses HIV Pathogenesis in Macrophages and Improves Drug Delivery to the Brain in Mice

Pharmaceutics. 2024 Apr 19;16(4):555. doi: 10.3390/pharmaceutics16040555.

Abstract

Although antiretroviral therapy (ART) can suppress peripheral HIV, patients still suffer from neuroHIV due to insufficient levels of ART drugs in the brain. Hence, this study focuses on developing a poly lactic-co-glycolic acid (PLGA) nanoparticle-based ART drug delivery system for darunavir (DRV) using an intranasal route that can overcome the limitation of drug metabolic stability and blood-brain barrier (BBB) permeability. The physicochemical properties of PLGA-DRV were characterized. The results indicated that PLGA-DRV formulation inhibits HIV replication in U1 macrophages directly and in the presence of the BBB without inducing cytotoxicity. However, the PLGA-DRV did not inhibit HIV replication more than DRV alone. Notably, the total antioxidant capacity remained unchanged upon treatment with both DRV or PLGA-DRV in U1 cells. Compared to DRV alone, PLGA-DRV further decreased reactive oxygen species, suggesting a decrease in oxidative stress by the formulation. Oxidative stress is generally increased by HIV infection, leading to increased inflammation. Although the PLGA-DRV formulation did not further reduce the inflammatory response, the formulation did not provoke an inflammatory response in HIV-infected U1 macrophages. As expected, in vitro experiments showed higher DRV permeability by PLGA-DRV than DRV alone to U1 macrophages. Importantly, in vivo experiments, especially using intranasal administration of PLGA-DRV in wild-type mice, demonstrated a significant increase in the brain-to-plasma ratio of DRV compared to the free DRV. Overall, findings from this study attest to the potential of the PLGA-DRV nanoformulation in reducing HIV pathogenesis in macrophages and enhancing drug delivery to the brain, offering a promising avenue for treating HIV-related neurological disorders.

Keywords: BBB; HIV; nanoparticle.