Evolutionary Conservation in Protein-Protein Interactions and Structures of the Elongator Sub-Complex ELP456 from Arabidopsis and Yeast

Int J Mol Sci. 2024 Apr 15;25(8):4370. doi: 10.3390/ijms25084370.

Abstract

The Elongator complex plays a pivotal role in the wobble uridine modification of the tRNA anticodon. Comprising two sets of six distinct subunits, namely, Elongator proteins (ELP1-ELP6) and associated proteins, the holo-Elongator complex demonstrates remarkable functional and structural conservation across eukaryotes. However, the precise details of the evolutionary conservation of the holo-Elongator complex and its individual sub-complexes (i.e., ELP123; ELP456) in plants remain limited. In this study, we conducted an in vivo analysis of protein-protein interactions among Arabidopsis ELP4, ELP5, and ELP6 proteins. Additionally, we predicted their structural configurations and performed a comparative analysis with the structure of the yeast Elp456 sub-complex. Protein-protein interaction analysis revealed that AtELP4 interacts with AtELP6 but not directly with AtELP5. Furthermore, we found that the Arabidopsis Elongator-associated protein, Deformed Roots and Leaves 1 (DRL1), did not directly bind to AtELP proteins. The structural comparison of the ELP456 sub-complex between Arabidopsis and yeast demonstrated high similarity, encompassing the RecA-ATPase fold and the positions of hydrogen bonds, despite their relatively low sequence homology. Our findings suggest that Arabidopsis ELP4, ELP5, and ELP6 proteins form a heterotrimer, with ELP6 serving as a bridge, indicating high structural conservation between the ELP456 sub-complexes from Arabidopsis and yeast.

Keywords: Arabidopsis; ELP456 sub-complex; Elongator; protein homology.

MeSH terms

  • Arabidopsis Proteins* / chemistry
  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / genetics
  • Arabidopsis* / metabolism
  • Evolution, Molecular*
  • Models, Molecular
  • Protein Binding*
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism

Substances

  • Arabidopsis Proteins
  • Saccharomyces cerevisiae Proteins