Data-Driven Design of Nickel-Free Superelastic Titanium Alloys

Materials (Basel). 2024 Apr 13;17(8):1793. doi: 10.3390/ma17081793.

Abstract

In this paper, a CatBoost model for predicting superelastic strains of alloys was established by utilizing features construction and selection as well as model filtering and evaluation based on 125 existing data points of superelastic titanium alloys. The alloy compositions of a TiNbMoZrSnTa system were optimized and three nickel-free titanium alloys with potentially excellent superelastic properties were designed using the Bayesian optimization algorithm using a superelastic strain as the optimization target. The experimental results indicated that only Ti-12Nb-18Zr-2Sn and Ti-12Nb-16Zr-3Sn exhibited clear superelasticity due to the absence of relevant information about the alloys' β stability in the machine learning model. Through experimental optimization of the heat treatment regimens, Ti-12Nb-18Zr-2Sn and Ti-12Nb-16Zr-3Sn ultimately achieved recovery strains of 4.65% after being heat treated at 853 K for 10 min and 3.01% after being heat treated at 1073 K for 30 min, respectively. The CatBoost model in this paper possessed a certain ability to design nickel-free superelastic titanium alloys but it was still necessary to combine it with existing knowledge of material theory for effective utilization.

Keywords: Bayesian optimization; machine learning; nickel-free superelastic titanium alloys; superelastic strain.

Grants and funding

This research received no external funding.