An Investigation of the Efficient-Precise Continuous Electrochemical Grinding Process of Ti-6Al-4V

Materials (Basel). 2024 Apr 10;17(8):1729. doi: 10.3390/ma17081729.

Abstract

Titanium alloys have many excellent characteristics, and they are widely used in aerospace, biomedicine, and precision engineering. Meanwhile, titanium alloys are difficult to machine and passivate readily. Electrochemical grinding (ECG) is an ideal technology for the efficient-precise machining of titanium alloys. In the ECG process of titanium alloys, the common approach of applying high voltage and active electrolytes to achieve high efficiency of material removal will lead to serious stray corrosion, and the time utilized for the subsequent finishing will be extended greatly. Therefore, the application of ECG in the field of high efficiency and precision machining of titanium alloys is limited. In order to address the aforementioned issues, the present study proposed an efficient-precise continuous ECG (E-P-C-ECG) process for Ti-6Al-4V applying high-pulsed voltage with an optimized duty cycle and low DC voltage in the efficient ECG stage and precise ECG stage, respectively, without changing the grinding wheel. According to the result of the passivation properties tests, the ideal electrolyte was selected. Optimization of the process parameters was implemented experimentally to improve the processing efficiency and precision of ECG of Ti-6Al-4V. Utilizing the process advantages of the proposed process, a thin-walled structure of Ti-6Al-4V was obtained with high efficiency and precision. Compared to the conventional mechanical grinding process, the compressive residual stress of the machined surface and the processing time were reduced by 90.5% and 63.3% respectively, and both the surface roughness and tool wear were obviously improved.

Keywords: duty cycle; efficient–precise continuous pulsed electrochemical grinding; pulsed voltage; surface roughness; titanium alloy Ti–6Al–4V.