The Genomic, Transcriptomic, and Immunologic Landscape of HRAS Mutations in Solid Tumors

Cancers (Basel). 2024 Apr 19;16(8):1572. doi: 10.3390/cancers16081572.

Abstract

Tipifarnib is the only targeted therapy breakthrough for HRAS-mutant (HRASmt) recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). The molecular profiles of HRASmt cancers are difficult to explore given the low frequency of HRASmt. This study aims to understand the molecular co-alterations, immune profiles, and clinical outcomes of 524 HRASmt solid tumors including urothelial carcinoma (UC), breast cancer (BC), non-small-cell lung cancer (NSCLC), melanoma, and HNSCC. HRASmt was most common in UC (3.0%), followed by HNSCC (2.82%), melanoma (1.05%), BC (0.45%), and NSCLC (0.44%). HRASmt was absent in Her2+ BC regardless of hormone receptor status. HRASmt was more frequently associated with squamous compared to non-squamous NSCLC (60% vs. 40% in HRASwt, p = 0.002). The tumor microenvironment (TME) of HRASmt demonstrated increased M1 macrophages in triple-negative BC (TNBC), HNSCC, squamous NSCLC, and UC; increased M2 macrophages in TNBC; and increased CD8+ T-cells in HNSCC (all p < 0.05). Finally, HRASmt was associated with shorter overall survival in HNSCC (HR: 1.564, CI: 1.16-2.11, p = 0.003) but not in the other cancer types examined. In conclusion, this study provides new insights into the unique molecular profiles of HRASmt tumors that may help to identify new targets and guide future clinical trial design.

Keywords: HRAS; biomarkers; precision oncology; tipifarnib; translational oncology.