Ultra-low-Potential Methanol Oxidation on Single-Ir-Atom Catalyst

Angew Chem Int Ed Engl. 2024 Apr 26:e202404713. doi: 10.1002/anie.202404713. Online ahead of print.

Abstract

Methanol oxidation plays a central role to implement sustainable energy economy, which is restricted by the sluggish reaction kinetics due to the multi-electron transfer process accompanied by numerous sequential intermediate. In this study, an efficient cascade methanol oxidation reaction is catalyzed by single-Ir-atom catalyst at ultra-low potential (< 0.1 V) with the promotion of the thermal and electrochemical integration in a high temperature polymer electrolyte membrane electrolyzer. At the elevated temperature, the electron deficient Ir site with higher methanol affinity could spontaneous catalyze the CH3OH dehydrogenation to CO under the voltage, then the generated CO and H2 was electrochemically oxidized to CO2 and proton. However, the methanol cannot thermally decompose with the voltage absence, which confirm the indispensable of the coupling of thermal and electrochemical integration for the methanol oxidation. By assembling the methanol oxidation reaction with hydrogen evolution reaction in the HT-PEME with single-Ir-atom catalysts in the anode chamber, a max hydrogen production rate reaches 18 mol gIr-1 h-1, which is much greater than that of Ir nanoparticles and commercial Pt/C catalyst. This study also demonstrated the electrochemical MOR activity of the single atom catalysts, which broadens the renewable energy devices and the catalyst design by an integration concept.

Keywords: Hydrogen; Single atom catalyst; electrocatalysis; methanol oxidation.