Degradation and mechanism of PAHs by Fe-based activated persulfate: Effect of temperature and noble metal

Sci Total Environ. 2024 Jun 25:931:172768. doi: 10.1016/j.scitotenv.2024.172768. Epub 2024 Apr 25.

Abstract

The accumulation of contaminants like PAHs in soil due to industrialization, urbanization, and intensified agriculture poses environmental challenges, owing to their persistence, hydrophobic nature, and toxicity. Thus, the degradation of PAHs has attracted worldwide attention in soil remediation. This study explored the effect of noble metal and temperature on the degradation of various polycyclic aromatic hydrocarbons (PAHs) in soil, as well as the types of reactive radicals generated and mechanism. The Fe-Pd/AC and Fe-Pt/AC activated persulfate exhibited high removal efficiency of 19 kinds of PAHs, about 79.95 % and 83.36 %, respectively. Fe-Pt/AC-activated persulfate exhibits superior degradation efficiency than that on Fe-Pd/AC-activated persulfate, due to the higher specific surface area and dispersity of Pt particles, thereby resulting in increased reactive radicals (·OH, SO4-· and ·OOH). Additionally, thermal activation enhances the degradation of PAHs, with initial efficiencies of 64.20 % and 55.49 % on Fe-Pd/AC- and Fe-Pt/AC-activated persulfate systems respectively, increasing to 76.05 % and 73.14 % with elevated temperatures from 21.5 to 50 °C. Metal and thermal activation facilitate S2O82- activation, generating reactive radicals, crucial for the degradation of PAHs via ring opening and oxygen hydrogenation reactions, yielding low-ring oxygen-containing derivatives such as organic acids, keto compounds, ethers, and esters. Furthermore, understanding the impact of parameters such as activation temperature and the types of noble metals on the degradation of PAHs within the activated persulfate system provides a theoretical foundation for the remediation of PAH-contaminated soil.

Keywords: Degradation mechanism; Iron-based bimetallic activator; PAHs; Thermal activation.