Atractylodin ameliorates lipopolysaccharide-induced depressive-like behaviors in mice through reducing neuroinflammation and neuronal damage

J Neuroimmunol. 2024 Apr 23:390:578349. doi: 10.1016/j.jneuroim.2024.578349. Online ahead of print.

Abstract

Depression is a psychiatric disorder associated with multiple factors including microglia-mediated neuroinflammation. Although atractylodin exerted a variety of biological activities, however the effect of atractylodin on neuroinflammation-related depression was still unclear. In this study, the lipopolysaccharide (LPS)-induced mouse model was used to explore the antidepressant effects and molecular mechanisms of atractylodin. The results showed that atractylodin increased sugar preference, also reduced immobility time in FST and TST. Further study showed atractylodin reduced the oxidative stress and the activation of microglia in mouse hippocampus, also inhibited the level of cytokine release, especially IL-1β. The results of western blotting showed that atractylodin significantly inhibited the expression of NLRP3 and pro-IL1β via inhibition of NF-κB pathway. Our studies showed that atractylodin upregulated BDNF/Akt pathway in mouse hippocampus. Therefore, this study firstly indicated that atractylodin can ameliorate lipopolysaccharide-induced depressive-like behaviors in mice through reducing neuroinflammation and neuronal damage, and its molecular mechanism may be associated with the decrease of the expression of NLRP3 inflammasome and upregulation of BDNF/Akt pathway.

Keywords: Atractylodin; BDNF; Depression; NLRP3; Oxidative stress.