Effect of ultrasound geometry on the production efficiency of damaged starch: Determining rheology parameters, and non-isothermal reaction kinetics

Ultrason Sonochem. 2024 Apr 20:106:106882. doi: 10.1016/j.ultsonch.2024.106882. Online ahead of print.

Abstract

Present study investigates the effects of probe size geometry on thermodynamic kinetics, rheology, and microstructure of wheat and tapioca starch. Ultrasound treatment using different probe diameters (20 mm and 100 mm) significantly influenced the gelatinization process. Results showed reduced enthalpy (ΔH) and Gibbs energy (ΔG), indicating enhanced gelatinization efficiency. According to the results, using a 20 mm and 100 mm probe leads to a reduction of 52.7 % and 68.6 % in reaction enthalpy for wheat starch compared to native starch, respectively. Microstructure analysis revealed structural changes, with ultrasound treatment leading to granular fractures and a sheet-like structure with air bubbles. The rheological behavior of the starches is found to exhibit shear thinning behavior, with the Casson model providing the best fit for the experimental data. Moreover, rheology modeling using Herschel-Bulkley and power law models showed increased viscosity and shear stress in larger probes. Numerical simulation data demonstrated that probe size influenced ultrasonic pressure, sound pressure level, and thermal power dissipation density, affecting fluid motion and velocity field components. Moreover, the maximum dissipated power decreases from 8.43 to 0.655 mW/m3 with an increase in probe diameter from 20 to 100 mm. The average yield shear stress values are calculated as 3.36 and 3.14 for wheat and tapioca starches, respectively. The larger probe diameter leads to greater entropy increases, with tapioca starch showing a 4.72 % increase and wheat starch a 4.97 % increase, compared to 2.56 % and 3.11 %, respectively, with the smaller probe. Additionally, the Keller-Miksis model provided insights into bubble dynamics, revealing increased pressure and temperature with higher pressure amplitudes.

Keywords: Microstructure analysis; Probe size geometry; Rheology modeling; Thermodynamic analysis; Ultrasound-assisted damaged starch.