Manipulation of Nonradiative Process Based on the Aggregation Microenvironment to Customize Excited-State Energy Conversion

Acc Chem Res. 2024 May 7;57(9):1360-1371. doi: 10.1021/acs.accounts.4c00071. Epub 2024 Apr 26.

Abstract

ConspectusNonradiative processes with the determined role in excited-state energy conversion, such as internal conversion (IC), vibrational relaxation (VR), intersystem crossing (ISC), and energy or electron transfer (ET or eT), have exerted a crucial effect on biological functions in nature. Inspired by these, nonradiative process manipulation has been extensively utilized to develop organic functional materials in the fields of energy and biomedicine. Therefore, comprehensive knowledge and effective manipulation of sophisticated nonradiative processes for achieving high-efficiency excited-state energy conversion are quintessential. So far, many strategies focused on molecular engineering have demonstrated tremendous potential in manipulating nonradiative processes to tailor excited-state energy conversion. Besides, molecular aggregation considerably affects nonradiative processes due to their ultrasensitivity, thus providing us with another essential approach to manipulating nonradiative processes, such as the famous aggregation-induced emission. However, the weak interactions established upon aggregation, namely, the aggregation microenvironment (AME), possess hierarchical, dynamic, and systemic characteristics and are extremely complicated to elucidate. Revealing the relationship between the AME and nonradiative process and employing it to customize excited-state energy conversion would greatly promote advanced materials in energy utilization, biomedicine, etc., but remain a huge challenge. Our group has devoted much effort to achieving this goal.In this Account, we focus on our recent developments in nonradiative process manipulation based on AME. First, we provide insight into the effect of the AME on nonradiative process in terms of its steric effect and electronic regulation, illustrating the possibility of nonradiative process manipulation through AME modulation. Second, the distinct enhanced steric effect is established by crystallization and heterogeneous polymerization to conduct crystallization-induced reversal from dark to bright excited states and dynamic hardening-triggered nonradiative process suppression for highly efficient luminescence. Meanwhile, promoting the ISC process and stabilizing the triplet state are also manipulated by the crystal and polymer matrix to induce room-temperature phosphorescence. Furthermore, the strategies employed to exploit nonradiative processes for photothermy and photosensitization are reviewed. For photothermal conversion, besides the weakened steric effect with promoted molecular motions, a new strategy involving the introduction of diradicals upon aggregation to narrow the energy band gap and enhance intermolecular interactions is put forward to facilitate IC and VR for high-efficiency photothermal conversion. For photosensitization, both the enhanced steric effect from the rigid matrix and the effective electronic regulation from the electron-rich microenvironment are demonstrated to facilitate ISC, ET, and eT for superior photosensitization. Finally, we explore the existing challenges and future directions of nonradiative process manipulation by AME modulation for customized excited-state energy conversion. We hope that this Account will be of wide interest to readers from different disciplines.