Heavy Metal Removal from Wastewater Using Poly(Gamma-Glutamic Acid)-Based Hydrogel

Gels. 2024 Apr 11;10(4):259. doi: 10.3390/gels10040259.

Abstract

The removal of toxic heavy metal ions from wastewater is of great significance in the protection of the environment and human health. Poly(gamma-glutamic acid) (PGA) is a non-toxic, biodegradable, and highly water-soluble polymer possessing carboxyl and imino functional groups. Herein, water-insoluble PGA-based hydrogels were prepared, characterized, and investigated as heavy metal adsorbents. The prepared hydrogels were recyclable and exhibited good adsorption effects on heavy metal ions including Cu2+, Cr6+, and Zn2+. The effects of adsorption parameters including temperature, solution pH, initial concentration of metal ions, and contact time on the adsorption capacity of the hydrogel for Cu2+ were investigated. The adsorption was a spontaneous and exothermic process. The process followed the pseudo-first-order kinetic model and Langmuir isotherm model, implying a physical and monolayer adsorption. The adsorption mechanisms investigation exhibited that Cu2+ adsorbed on the hydrogel via electrostatic interactions with anionic carboxylate groups of PGA in addition to the coordination interactions with the -NH groups. Importantly, the PGA hydrogel exhibited good reusability and the adsorption capability for Cu2+ remained high after five consecutive cycles. The properties of PGA hydrogel make it a potential candidate material for heavy metal ion removal in wastewater treatment.

Keywords: adsorption; heavy metal; hydrogel; poly(gamma-glutamic acid); polymer; water treatment.