Photothermal optical coherence tomography for 3D live cell detection and mapping

Opt Contin. 2023 Dec 15;2(12):2468-2483. doi: 10.1364/optcon.503577. Epub 2023 Nov 27.

Abstract

Imaging cells in their 3D environment with molecular specificity is important to cell biology study. Widely used microscopy techniques, such as confocal microscopy, have limited imaging depth when probing cells in optically scattering media. Optical coherence tomography (OCT) can provide millimeter-level depth for imaging of highly scattering media but lacks the contrast to distinguish cells from extracellular matrix or to distinguish between different types of cells. Photothermal OCT (PT-OCT) is a promising technique to obtain molecular contrast at the imaging scale of OCT. Here, we report PT-OCT imaging of live, nanoparticle-labeled cells in 3D. In particular, we demonstrate detection and mapping of single cell in 3D without causing call death, and show the feasibility of 3D cell mapping through optical scattering media. This work presents live cell detection and mapping at an imaging scale that complements the major microscopy techniques, which is potentially useful to study cells in their 3D native or culture environment.