Metabolic engineering of omega-3 long chain polyunsaturated fatty acids in plants using different ∆6- and ∆5-desaturases co-expressed with LPCAT from the marine diatom Phaeodactylum tricornutum

Sci Rep. 2024 Apr 25;14(1):9512. doi: 10.1038/s41598-024-60141-3.

Abstract

Continuous research on obtaining an even more efficient production of very long-chain polyunsaturated fatty acids (VLC-PUFAs) in plants remains one of the main challenges of scientists working on plant lipids. Since crops are not able to produce these fatty acids due to the lack of necessary enzymes, genes encoding them must be introduced exogenously from native organisms producing VLC-PUFAs. In this study we reported, in tobacco leaves, the characterization of three distinct ∆6-desaturases from diatom Phaeodactylum tricornutum, fungi Rhizopus stolonifer and microalge Osterococcus tauri and two different ∆5-desaturases from P. tricornutum and single-celled saprotrophic eukaryotes Thraustochytrium sp. The in planta agroinfiltration of essential ∆6-desaturases, ∆6-elongases and ∆5-desaturases allowed for successful introduction of eicosapentaenoic acid (20:5∆5,8,11,14,17) biosynthesis pathway. However, despite the desired, targeted production of ω3-fatty acids we detected the presence of ω6-fatty acids, indicating and confirming previous results that all tested desaturases are not specifically restricted to neither ω3- nor ω6-pathway. Nevertheless, the additional co-expression of acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) from Phaeodactylum tricornutum boosted the proportion of ω3-fatty acids in newly synthesized fatty acid pools. For the most promising genes combinations the EPA content reached at maximum 1.4% of total lipid content and 4.5% of all fatty acids accumulated in the TAG pool. Our results for the first time describe the role of LPCAT enzyme and its effectiveness in alleviating a bottleneck called 'substrate dichotomy' for improving the transgenic production of VLC-PUFAs in plants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Diatoms* / enzymology
  • Diatoms* / genetics
  • Diatoms* / metabolism
  • Fatty Acid Desaturases* / genetics
  • Fatty Acid Desaturases* / metabolism
  • Fatty Acids, Omega-3* / biosynthesis
  • Fatty Acids, Omega-3* / metabolism
  • Metabolic Engineering* / methods
  • Nicotiana* / genetics
  • Nicotiana* / metabolism
  • Plants, Genetically Modified* / genetics

Substances

  • Fatty Acid Desaturases
  • Fatty Acids, Omega-3