Exploring the chemical diversity of sesquiterpenes from the rarely studied south China sea soft coral Sinularia tumulosa assisted by molecular networking strategy

Phytochemistry. 2024 Apr 23:222:114110. doi: 10.1016/j.phytochem.2024.114110. Online ahead of print.

Abstract

Molecular networking strategy-based prioritization of the isolation of the rarely studied soft coral Sinularia tumulosa yielded 14 sesquiterpenes. These isolated constituents consisted of nine different types of carbon frameworks, namely asteriscane, humulane, capillosane, seco-asteriscane, guaiane, dumortane, cadinane, farnesane, and benzofarnesane. Among them, situmulosaols A-C (1, 3 and 4) were previously undescribed ones, whose structures with absolute configurations were established by the combination of extensive spectral data analyses, quantum mechanical-nuclear magnetic resonance and time-dependent density functional theory electronic circular dichroism calculations, the Snatzke's method, and the modified Mosher's method. Notably, situmulosaol C (4) was the second member of capillosane-type sesquiterpenes. The plausible biogenetic relationships of these skeletally different sesquiterpenes were proposed. All sesquiterpenoids were evaluated for their antibacterial, cytotoxic and anti-inflammatory effects. The bioassay results showed compound 14 exhibited significant antibacterial activities against a variety of fish and human pathogenic bacteria with MIC90 values ranging from 3.6 to 33.8 μg/mL. Moreover, moderate cytotoxic effects against HEL cells for components 13 and 14 and moderate inhibitory effect on lipopolysaccharide-induced inflammatory responses in RAW264.7 cells for substance 13 were also observed.

Keywords: Alcyoniidae; Anti-inflammatory activity; Antibacterial activity; Cytotoxicity; GNPS; Sesquiterpenes; Sinularia tumulosa; Soft coral.