N vacancy and self-enhancement induced high anodic electrochemiluminescence of 3D g-C3N4 for sensitive staphylococcus aureus analysis

Talanta. 2024 Apr 23:275:126144. doi: 10.1016/j.talanta.2024.126144. Online ahead of print.

Abstract

Here, 3D g-C3N4 with dense N vacancy in its 3D porous interconnected open-framework was synthesized, and the co-reactive 3-(dibutylamino)propylamine (DBAPA) was further covalently coupled onto the surface, resulting in a strong self-enhanced anodic electrochemiluminescence (ECL). Through introduction of high-density N vacancy, for the obtained 3D g-C3N4-NV, the band gap was broadened and the electrical conductivity was enhanced, realizing an obvious ECL improvement. Moreover, after the covalent binding of co-reactive DBAPA, the obtained 3D g-C3N4-NV-DBAPA exhibited a more intensive self-enhanced ECL signal due to the higher co-reaction efficiency originated from shorter electron transfer distance and lower energy loss. Based on the high initial signal of the proposed 3D g-C3N4-NV-DBAPA, a sensitive ECL biosensor with signal "on-off" was fabricated in assistance with multiple horizontal ordered hybridization chain reaction (HO-HCR). Through orderly fixing the reacted DNA chains on the Y-shape DNA structure on the electrode could effectively decrease diffusion process and improve the reaction efficiency of HCR process, resulting in the formation of numerous long horizontal double-strand DNA that could immobilize abundant ferrocene-doxorubicin (Fc-Dox) with ECL quenching effect. Meanwhile, compared to the traditional vertical HCR, the HO-HCR could make the quench reagent closer to the ECL emitter on the electrode surface and obtain a more effective quenching effect to enhance the sensing sensitivity. As a result, the proposed ECL biosensor archived the sensitive measurement of staphylococcus aureus with a detection limit of 10.3 aM.

Keywords: 3D g-C(3)N(4); HO-HCR; N vacancy; Self-enhanced anodic ECL; staphylococcus aureus.