Mn-doped Sequentially Electrodeposited Co-based Oxygen Evolution Catalyst for Efficient Anion Exchange Membrane Water Electrolysis

ACS Appl Mater Interfaces. 2024 Apr 25. doi: 10.1021/acsami.4c01865. Online ahead of print.

Abstract

Designing high-performance and durable oxygen evolution reaction (OER) catalysts is important for green hydrogen production through anion exchange membrane water electrolysis (AEMWE). Herein, a series of Mn-doped Co-based OER catalysts supported on FeOxHy (FCMx) are presented to enhance the OER activity. Mn doping effectively reduces the size of the Co oxide particles, thereby augmenting the active surface area. Moreover, Mn doping induces the creation of oxygen vacancies, leading to an efficient structural conversion during the OER, which is confirmed via in situ Raman spectroscopy. Under optimal conditions, the catalyst exhibits an overpotential of 234.4 mV at 10 mA cm-2 and a Tafel slope of 37.2 mV dec-1 under half-cell conditions. The AEMWE single-cell system demonstrates a current density of 1560 mA cm-2 at 1.8 V at 60 °C with a degradation rate of 0.4 mV h-1 for 500 h at 500 mA cm-2. Our development of a robust OER catalyst represents notable progress in the field of nonprecious-metal water electrolysis, marking a step toward cost-effective green hydrogen production.

Keywords: anion exchange membrane water electrolysis; cobalt; manganese doping; oxygen evolution reaction; oxygen vacancy; sequential electrodeposition.