Loureirin B improves H/R-induced hepatic ischemia-reperfusion injury by downregulating ALOX5 to regulate mitochondrial homeostasis

Naunyn Schmiedebergs Arch Pharmacol. 2024 Apr 25. doi: 10.1007/s00210-024-03079-7. Online ahead of print.

Abstract

This study was conceived to explore the role and the mechanism of Loureirin B (LB) in hepatic IRI. The viability of LB-treated AML-12 cells was assessed using CCK-8 assay and inflammatory cytokines were detected using ELISA. The activities of ROS and oxidative stress markers MDA, SOD, and GSH-Px were detected using DCFH-DA and corresponding assay kits. The cell apoptosis and caspase3 activity were estimated with flow cytometry and caspase3 assay kits. The expressions of arachidonate 5-lipoxygenase (ALOX5) and apoptosis- and mitochondrial dynamics-related proteins were detected using western blot. The interaction between LB and ALOX5 was analyzed with molecular docking. The transfection efficacy of oe-ALOX5 was examined with RT-qPCR and western blot. Mitochondrial membrane potential was detected with JC-1 staining and immunofluorescence (IF) assay was employed to estimate mitochondrial fusion and fission. The present work found that LB revived the viability, inhibited inflammatory response, suppressed oxidative stress, repressed the apoptosis, and maintained mitochondrial homeostasis in H/R-induced AML-12 cells, which were all reversed by ALOX5 overexpression. Collectively, LB regulated mitochondrial homeostasis by downregulating ALOX5, thereby improving hepatic IRI.

Keywords: ALOX5; Hepatic ischemia reperfusion injury; Loureirin B; Mitochondrial homeostasis.