Proteomic Discovery of RNA-Protein Molecular Clamps Using a Thermal Shift Assay with ATP and RNA (TSAR)

bioRxiv [Preprint]. 2024 Apr 19:2024.04.19.590252. doi: 10.1101/2024.04.19.590252.

Abstract

Uncompetitive inhibition is an effective strategy for suppressing dysregulated enzymes and their substrates, but discovery of suitable ligands depends on often-unavailable structural knowledge and serendipity. Hence, despite surging interest in mass spectrometry-based target identification, proteomic studies of substrate-dependent target engagement remain sparse. Herein, we describe the Thermal Shift Assay with ATP and RNA (TSAR) as a template for proteome-wide discovery of substrate-dependent ligand binding. Using proteomic thermal shift assays, we show that simple biochemical additives can facilitate detection of target engagement in native cell lysates. We apply our approach to rocaglates, a family of molecules that specifically clamp RNA to eukaryotic translation initiation factor 4A (eIF4A), DEAD-box helicase 3X (DDX3X), and potentially other members of the DEAD-box (DDX) family of RNA helicases. To identify unexpected interactions, we optimized a target class-specific thermal denaturation window and evaluated ATP analog and RNA probe dependencies for key rocaglate-DDX interactions. We report novel DDX targets of the rocaglate clamping spectrum, confirm that DDX3X is a common target of several widely studied analogs, and provide structural insights into divergent DDX3X affinities between synthetic rocaglates. We independently validate novel targets of high-profile rocaglates, including the clinical candidate Zotatifin (eFT226), using limited proteolysis-mass spectrometry and fluorescence polarization experiments. Taken together, our study provides a model for screening uncompetitive inhibitors using a systematic chemical-proteomics approach to uncover actionable DDX targets, clearing a path towards characterization of novel molecular clamps and associated RNA helicase targets.

Publication types

  • Preprint