Interfacial charge transfer in sheet Ni2P-FePx heterojunction to promote the study of electrocatalytic oxygen evolution

Dalton Trans. 2024 Apr 25. doi: 10.1039/d4dt00054d. Online ahead of print.

Abstract

The substantial expense associated with catalysts significantly hampers the progress of electrolytic water-based hydrogen production technology. There is an urgent need to find non-precious metal catalysts that are both cost-effective and highly efficient. Here, the porous Ni2P-FePx nanomaterials were successfully prepared by hydrothermal method, nickel foam as the base, iron nitrate solution as the caustic agent and iron source, and finally phosphating at low temperature. The obtained porous Ni2P-FePx nanosheets showed excellent catalytic activity under alkaline PH = 14, and an overpotential of merely 241 mV was required to achieve a current density of 50 mA cm-2. The morphology of the nanosheet can still be flawlessly presented on the screen after 50 h of working at high current density.