Mesoporous Gold: Substrate-Dependent Growth Dynamics, Strain Accumulation, and Electrocatalytic Activity for Biosensing

Small. 2024 Apr 24:e2311645. doi: 10.1002/smll.202311645. Online ahead of print.

Abstract

Understanding the growth of mesoporous crystalline materials, such as mesoporous metals, on different substrates can provide valuable insights into the crystal growth dynamics and the redox reactions that influence their electrochemical sensing performance. Herein, it is demonstrated how the amorphous nature of the glass substrate can suppress the typical <111> oriented growth in mesoporous Au (mAu) films. The suppressed <111> growth is manifested as an accumulation of strain, leading to the generation of abundant surface defects, which are beneficial for enhancing the electrochemical activity. The fine structuring attained enables dramatically accelerated diffusion and enhances the electrochemical sensing performance for disease-specific biomolecules. As a proof-of-concept, the as-fabricated glass-grown mAu film demonstrates high sensitivity in electrochemical detection of SARS-CoV-2-specific RNA with a limit of detection (LoD) as low as 1 attomolar (aM).

Keywords: SARS‐CoV‐2; biosensors; electrochemical sensing; lattice expansion; mesoporous gold; strain engineering.