Clean synthesis of silver nanoparticles (AgNPs) on polyamide fabrics by Verbascum thapsus L. (mullein) extract: characterization, colorimetric, antibacterial, and colorfastness studies

Environ Sci Pollut Res Int. 2024 Apr 24. doi: 10.1007/s11356-024-33373-z. Online ahead of print.

Abstract

The production of antibacterial colored textiles using nanomaterials (NMs) has become an ideal goal from both a research and industrial perspective. In this study, the clean synthesis and characterization of silver nanoparticles (AgNPs) on polyamide fabrics were performed using mullein extract for the first time. Natural dyes were extracted from mullein leaves using an ultrasonic method, with an optimal amount of 15 g/L. The synthesized AgNPs in different ratios of mullein extract and Ag ions were analyzed (using UV-visible spectroscopy) and dynamic light scattering (DLS). It was found that AgNPs synthesized with a ratio of 1:4 of mullein extract: to Ag ions had a diameter of 85 nm. The active site groups of the synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR). Nylon fabrics dyed with different ratios of mullein extract and Ag ions exhibited acceptable color strength values (K/S) of 3.36. Furthermore, the reduction in bacterial growth for dyed fabrics improved with an increase in the ratio of Ag ions, with a 100% reduction observed for a sample dyed with mullein extract: Ag ions at a ratio of 1:4. Overall, this method offers a simple, low-cost, and compatible process with environment without the consumption of any chemicals to producing nylon with acceptable antibacterial and dyeing properties.

Keywords: Mullein extract; Antibacterial; Natural dye; Nylon fabric; Silver nanoparticles.