Carbon Dot-Based Photo-Cross-Linked Gelatin Methacryloyl Hydrogel Enables Dental Pulp Regeneration: A Preliminary Study

ACS Appl Mater Interfaces. 2024 Apr 24. doi: 10.1021/acsami.4c03168. Online ahead of print.

Abstract

An essential factor in tooth nutritional deficits and aberrant root growth is pulp necrosis. Removing inflammatory or necrotic pulp tissue and replacing it with an inert material are the most widely used therapeutic concepts of endodontic treatment. However, pulp loss can lead to discoloration, increased fracture risk, and the reinfection of the damaged tooth. It is now anticipated that the pulp-dentin complex will regenerate through a variety of application methods based on human dental pulp stem cells (hDPSC). In order to create a photo-cross-linked gelatinized methacrylate hydrogel, GelMA/EUO-CDs-E (ECE), that is biodegradable and injectable for application, we created a novel nanoassembly of ECE based on eucommia carbon dots (EUO-CDs) and epigallocatechin gallate (EGCG). We then loaded it onto gelatin methacryloyl (GelMA) hydrogel. We have evaluated the material and examined its in vivo and in vitro angiogenesis-promoting potential as well as its dentin differentiation-enabling characteristics. The outcomes of the experiment demonstrated that GelMA/ECE was favorable to cell proliferation and enhanced hDPSC's capacity for angiogenesis and dentin differentiation. The regeneration of vascular-rich pulp-like tissues was found to occur in vivo when hDPSC-containing GelMA/ECE was injected into cleaned human root segments (RS) for subcutaneous implantation in nude mice. This suggests that the injectable bioscaffold is appropriate for clinical use in pulp regenerative medicine.

Keywords: carbon dots; epigallocatechin gallate; gelatin methacryloyl hydrogel; human dental pulp stem cell; pulp regeneration.