Unifying network model links recency and central tendency biases in working memory

Elife. 2024 Apr 24:12:RP86725. doi: 10.7554/eLife.86725.

Abstract

The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain's ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience - producing short-term sensory history biases - naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution's mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

Keywords: contraction bias; human; neural network; neuroscience; posterior parietal cortex; rat; serial bias; working memory.

Plain language summary

During cognitive tasks, our brain needs to temporarily hold and manipulate the information it is processing to decide how best to respond. This ability, known as working memory, is influenced by how the brain represents and processes the sensory world around us, which can lead to biases, such as ‘central tendency’. Consider an experiment where you are presented with a metal bar and asked to recall how long it was after a few seconds. Typically, our memories, averaged over many trials of repeating this memory recall test, appear to skew towards an average length, leading to the tendency to mis-remember the bar as being shorter or longer than it actually was. This central tendency occurs in most species, and is thought to be the result of the brain learning which sensory input is the most likely to occur out of the range of possibilities. Working memory is also influenced by short-term history or recency bias, where a recent past experience influences a current memory. Studies have shown that ‘turning off’ a region of the rat brain called the posterior parietal cortex removes the effects of both recency bias and central tendency on working memory. Here, Boboeva et al. reveal that these two biases, which were thought to be controlled by separate mechanisms, may in fact be related. Building on the inactivation study, the team modelled a circuit of neurons that can give rise to the results observed in the rat experiments, as well as behavioural results in humans and primates. The computational model contained two modules: one of which represented a putative working memory, and another which represented the posterior parietal cortex which relays sensory information about past experiences. Boboeva et al. found that sensory inputs relayed from the posterior parietal cortex module led to recency biases in working memory. As a result, central tendency naturally emerged without needing to add assumptions to the model about which sensory input is the most likely to occur. The computational model was also able to replicate all known previous experimental findings, and made some predictions that were tested and confirmed by psychophysics tests on human participants. The findings of Boboeva et al. provide a new potential mechanism for how central tendency emerges in working memory. The model suggests that to achieve central tendency prior knowledge of how a sensory stimulus is distributed in an environment is not required, as it naturally emerges due to a volatile working memory which is susceptible to errors. This is the first mechanistic model to unify these two sources of bias in working memory. In the future, this could help advance our understanding of certain psychiatric conditions in which working memory and sensory learning are impaired.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Humans
  • Memory, Short-Term* / physiology
  • Models, Neurological
  • Parietal Lobe / physiology
  • Rats