Mass spectrometry-based pseudotargeted metabolomics reveals metabolic variations in a2-induced gastric cancer cell

Eur J Mass Spectrom (Chichester). 2024 Apr 24:14690667241248444. doi: 10.1177/14690667241248444. Online ahead of print.

Abstract

Gastric cancer (GC) is one of the most malignant tumors with high morbidity and mortality in the world. Compound a2, a Jiyuan oridonin derivative, exhibited excellent anti-proliferative activity against GC cells. To investigate the gastric cellular response to a2 therapy as a novel drug candidate, we adopted a pseudotargeted metabolomics method to explore metabolic variation in a2-induced MGC-803 gastric cells using liquid chromatography tandem mass spectrometry combined with multivariate statistical analysis. The results showed that a2 treatment induced significant metabolic changes in the levels of aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate metabolism, pyrimidine metabolism, and tricarboxylic acid cycle, approximately 80% of the metabolites were down-regulated in the low-dose and high-dose groups including aspartate, tryptophan, sedoheptulose 7-phosphate, succinate, 2'-deoxyadenosine, uridine, cytidine, etc. which can provide evidence for a new therapy of GC.

Keywords: LC-MS/MS; MGC-803 cells; compound a2; gastric cancer; pseudotargeted metabolomics.