Mapping knowledge landscapes and emerging trends of Marburg virus: A text-mining study

Heliyon. 2024 Apr 15;10(8):e29691. doi: 10.1016/j.heliyon.2024.e29691. eCollection 2024 Apr 30.

Abstract

Background: Marburg virus (MARV), a close relative of Ebola virus, could induce hemorrhagic fevers in humans with high mortality rate. In recent years, increasing attention has been paid to this highly lethal virus due to sporadic outbreaks observed in various African nations. This bibliometric analysis endeavors to elucidate the trends, dynamics, and focal points of knowledge that have delineated the landscape of research concerning MARV.

Methods: Relevant literature on MARV from 1968 to 2023 was extracted from the Web of Science Core Collection database. Following this, the data underwent bibliometric analysis and visualization procedures utilizing online analysis platform, CiteSpace 6.2R6, and VOSviewer 1.6.20. Three different types of bibliometric indicators including quantitative indicator, qualitative indicators, and structural indicators were used to gauge a researcher's productivity, assess the quality of their work, and analyze publication relationships, respectively.

Results: MARV is mainly prevalent in Africa. And approximately 643 confirmed cases have been described in the literature to date, and mortality observed was 81.2 % in overall patients. A total of 1014 papers comprising 869 articles and 145 reviews were included. The annual publications showed an increasing growth pattern from 1968 to 2023 (R2 = 0.8838). The United States stands at the forefront of this discipline, having dedicated substantial financial and human resources to scientific inquiry. However, co-authorship analysis showed the international research collaboration needs to be further strengthened. Based on reference and keywords analysis, contemporary MARV research encompasses pivotal areas: primarily, prioritizing the creation of prophylactic vaccines to impede viral spread, and secondarily, exploring targeted antiviral strategies, including small-molecule antivirals or MARV-specific monoclonal antibodies. Additionally, a comprehensive grasp of viral transmission, transcription, and replication mechanisms remains a central focus in ongoing investigations. And future MARV studies are expected to focus on evaluating clinical trial safety and efficacy, developing inhibitors to contain viral spread, exploring vaccine immunogenicity, virus-host association studies, and elucidating the role of neutralizing antibodies in MARV treatment.

Conclusion: The present study offered comprehensive insights into the contemporary status and trajectories of MARV over the past decades. This enables researchers to discern novel collaborative prospects, institutional partnerships, emerging topics, and research forefronts within this domain.

Keywords: Bibliometric; CiteSpace; Infectious diseases; Marburg virus; VOSviewer.