An Efficient Human Activity Recognition In-Memory Computing Architecture Development for Healthcare Monitoring

IEEE J Biomed Health Inform. 2024 Apr 23:PP. doi: 10.1109/JBHI.2024.3392648. Online ahead of print.

Abstract

Human activity recognition has played a crucial role in healthcare information systems due to the fast adoption of artificial intelligence (AI) and the internet of thing (IoT). Most of the existing methods are still limited by computational energy, transmission latency, and computing speed. To address these challenges, we develop an efficient human activity recognition in-memory computing architecture for healthcare monitoring. Specifically, a mechanism-oriented model of Ag/a-Carbon/Ag memristor is designed, serving as the core circuit component of the proposed in-memory computing system. Then, one-transistor-two-memristor (1T2M) crossbar array is proposed to perform high-efficiency multiply-accumulate (MAC) operation and high-density memory in the proposed scheme. To facilitate understanding of the proposed efficient human activity recognition in-memory computing design, self-attention ConvLSTM module, multi-head convolutional attention module, and recognition module are proposed. Furthermore, the proposed system is applied to perform human activity recognition, which contains eleven different human activities, including five different postural falls, and six basic daily activities. The experimental results show that the proposed system has advantages in recognition performance (≥ 0.20% accuracy, ≥ 1.10% F1-score) and time consumption (approximately 8∼10 times speed up) compared to existing methods, indicating an advancement in smart healthcare applications.