Multi-omics characterization of esophageal squamous cell carcinoma identifies molecular subtypes and therapeutic targets

JCI Insight. 2024 Apr 23:e171916. doi: 10.1172/jci.insight.171916. Online ahead of print.

Abstract

Esophageal squamous cell carcinoma (ESCC) is the predominant form of esophageal cancer and is characterized by an unfavorable prognosis. To elucidate the distinct molecular alterations in ESCC and investigate therapeutic targets, we performed a comprehensive analysis of transcriptomic, proteomic, and phosphoproteomic data derived from 60 paired treatment-naive ESCC and adjacent non-tumor tissue samples. Additionally, we conducted a correlation analysis to describe the regulatory relationship between transcriptomic and proteomic processes, revealing alterations in key metabolic pathways. Unsupervised clustering analysis of the proteomic data stratified ESCC patients into three subtypes with different molecular characteristics and clinical outcomes. Notably, subtype III exhibited the worst prognosis and enrichment in proteins associated with malignant processes, including glycolysis and DNA repair pathways. Furthermore, translocase of inner mitochondrial membrane domain containing 1 (TIMMDC1) was validated as a potential prognostic molecule for ESCC. Moreover, integrated kinase-substrate network analysis using the phosphoproteome nominated candidate kinases as potential targets. In vitro and in vivo experiments further confirmed casein kinase II subunit alpha (CSNK2A1) as a potential kinase target for ESCC. These underlying data represent a valuable resource for researchers, which may provide better insights into the biology and treatment of ESCC.

Keywords: Cancer; Oncology; Protein kinases; Proteomics; Therapeutics.