Investigating the potential use of Ni-Mn-Co (NMC) battery materials as electrocatalysts for electrochemical water splitting

Chemphyschem. 2024 Apr 23:e202400124. doi: 10.1002/cphc.202400124. Online ahead of print.

Abstract

The imminent generation of significant amounts of Li ion battery waste is of concern due to potential detrimental environmental impacts. However, this also poses an opportunity to recycle valuable battery materials for later use. One underexplored area is using commonly employed cathode materials such as nickel, manganese cobalt (NMC) oxide as an electrocatalyst for water splitting reactions. In this work we explore the possibility of using NMC materials of different metallic ratios (NMC 622 and 811) as oxygen evolution and hydrogen evolution catalysts under alkaline conditions. We show that both materials are excellent oxygen evolution reaction (OER) electrocatalysts but perform poorly for the hydrogen evolution reaction. NMC 622 demonstrates the better OER activity with an overpotential of only 280 mV to pass 100 mA cm-2 and a low tafel slope of 42 mV dec-1. The material can also pass high current densities of 150 mA cm-2 for 24 h while also being tolerant to extensive potential cycling indicating suitability for direct integration with renewable energy inputs. This work demonstrates that NMC cathode materials if recovered from Li ion batteries are suitable OER electrocatalysts.

Keywords: Li ion batteries; e-waste recycling; electrocatalysis; oxygen evolution reaction; water splitting.