Influence of Cation-Size Effects of Alkaline Earth (Ae) Metals on Dimensionality and Optical Anisotropy Regulation in K4AeP2S8 Thiophosphates

Inorg Chem. 2024 May 6;63(18):8294-8301. doi: 10.1021/acs.inorgchem.4c00608. Epub 2024 Apr 22.

Abstract

Cationic substitution demonstrates significant potential for regulating structural dimensionality and physicochemical performance owing to the cation-size effect. Leveraging this characteristic, this study synthesized a new family of K4AeP2S8 (Ae = alkaline earth elements: Mg, Ca, Sr, and Ba) thiophosphates, involving the substitution of Ae2+ cations. The synthesized compounds crystallized in distinct space groups, monoclinic P2/c (Ae = Mg) versus orthorhombic Ibam (Ae = Ca, Sr, and Ba), exhibiting intriguing dimensionality transformations from zero-dimensional (0D) [Mg2P4S16]8- clusters in K4MgP2S8 to 1D [AeP2S8]4- chains in other K4AeP2S8 thiophosphates owing to the varying ionic radii of Ae2+ cations, Ae-S bond lengths, and coordination numbers of AeSn (Mg: n = 6 versus other: n = 8). Experimental investigations revealed that K4AeP2S8 thiophosphates featured wide optical bandgaps (3.37-3.64 eV), and their optical absorptions were predominantly influenced by the S 3p and P 3s orbitals, with negligible contributions from the K and Ae cations. Notably, within the K4AeP2S8 series, birefringence (Δn) increased from K4MgP2S8n = 0.034) to other K4AeP2S8n = 0.050-0.079) compounds, suggesting that infinite 1D chains more significantly influence Δn origins than 0D clusters, thus offering a feasible approach for enhancing optical anisotropy and exploring potential new birefringent materials.