Caffeic-Acid-Functionalized MWCNTs and PEDOT:PSS Formed Composite Flexible Films with "Reinforced Concrete" Structure for Electrical Heating and EMI Shielding

ACS Appl Mater Interfaces. 2024 May 1;16(17):22391-22402. doi: 10.1021/acsami.4c01373. Epub 2024 Apr 22.

Abstract

Nowadays, flexible multifunctional composites are attracting much attention and are practically being used in various emerging electronic devices. However, most composites suffer from the disadvantages of high loadings of conductive fillers, complicated preparation processes, and low energy conversion efficiency. In this article, Caffeic acid-modified multiwalled carbon nanotubes (C-MWCNTs)/poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS)/polyimide (PI) composite films (CPFs) were prepared using a simple layer-by-layer deposition method. The "reinforced concrete" structure of the C-MWCNTs/PEDOT:PSS layer ensures high electrical conductivity of the film, while the PI layer provides excellent mechanical properties (72.69 MPa). The composite film exhibits excellent electrothermal response and thermal stability up to approximately 125 °C at 5 V. In addition, the good conductivity of the film provides its electromagnetic shielding effectiveness (32.69 dB). With these advantages, we expect that flexible CPFs will be widely utilized in wearable devices, electromagnetic interference (EMI) shielding applications, and thermal management of personal or electronic devices.

Keywords: EMI shielding; PEDOT:PSS; carbon nanotubes; electrical heating; multifunctional conductive composites.