Comparative validation of automated presurgical tractography based on constrained spherical deconvolution and diffusion tensor imaging with direct electrical stimulation

Hum Brain Mapp. 2024 Apr 15;45(6):e26662. doi: 10.1002/hbm.26662.

Abstract

Objectives: Accurate presurgical brain mapping enables preoperative risk assessment and intraoperative guidance. This cross-sectional study investigated whether constrained spherical deconvolution (CSD) methods were more accurate than diffusion tensor imaging (DTI)-based methods for presurgical white matter mapping using intraoperative direct electrical stimulation (DES) as the ground truth.

Methods: Five different tractography methods were compared (three DTI-based and two CSD-based) in 22 preoperative neurosurgical patients undergoing surgery with DES mapping. The corticospinal tract (CST, N = 20) and arcuate fasciculus (AF, N = 7) bundles were reconstructed, then minimum distances between tractograms and DES coordinates were compared between tractography methods. Receiver-operating characteristic (ROC) curves were used for both bundles. For the CST, binary agreement, linear modeling, and posthoc testing were used to compare tractography methods while correcting for relative lesion and bundle volumes.

Results: Distance measures between 154 positive (functional response, pDES) and negative (no response, nDES) coordinates, and 134 tractograms resulted in 860 data points. Higher agreement was found between pDES coordinates and CSD-based compared to DTI-based tractograms. ROC curves showed overall higher sensitivity at shorter distance cutoffs for CSD (8.5 mm) compared to DTI (14.5 mm). CSD-based CST tractograms showed significantly higher agreement with pDES, which was confirmed by linear modeling and posthoc tests (PFWE < .05).

Conclusions: CSD-based CST tractograms were more accurate than DTI-based ones when validated using DES-based assessment of motor and sensory function. This demonstrates the potential benefits of structural mapping using CSD in clinical practice.

Keywords: constrained spherical deconvolution; diffusion tensor imaging; direct electrical stimulation; neurosurgery; presurgical planning; white matter.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Adult
  • Aged
  • Brain Mapping* / methods
  • Brain Mapping* / standards
  • Cross-Sectional Studies
  • Diffusion Tensor Imaging* / methods
  • Diffusion Tensor Imaging* / standards
  • Electric Stimulation* / methods
  • Female
  • Humans
  • Male
  • Middle Aged
  • Preoperative Care / methods
  • Preoperative Care / standards
  • Pyramidal Tracts / diagnostic imaging
  • White Matter / diagnostic imaging
  • Young Adult