Neuroprotective effects of takinib on an experimental traumatic brain injury rat model via inhibition of transforming growth factor beta-activated kinase 1

Heliyon. 2024 Apr 10;10(8):e29484. doi: 10.1016/j.heliyon.2024.e29484. eCollection 2024 Apr 30.

Abstract

Transforming growth factor β-activated kinase 1 (TAK1) plays a significant role in controlling several signaling pathways involved with regulating inflammation and apoptosis. As such, it represents an important potential target for developing treatments for traumatic brain injury (TBI). Takinib, a small molecule and selective TAK1 inhibitor, has potent anti-inflammatory activity and has shown promising activity in preclinical studies using rat models to evaluate the potential neuroprotective impact on TBI. The current study used a modified Feeney's weight-drop model to cause TBI in mature Sprague-Dawley male rats. At 30 min post-induction of TBI in the rats, they received an intracerebroventricular (ICV) injection of Takinib followed by assessment of their histopathology and behavior. The results of this study demonstrated how Takinib suppressed TBI progression in the rats by decreasing TAK1, p-TAK1, and nuclear p65 levels while upregulating IκB-α expression. Takinib was also shown to significantly inhibit the production of two pro-inflammatory factors, namely tumor necrosis factor-α and interleukin-1β. Furthermore, Takinib greatly upregulated the expression of tight junction proteins zonula occludens-1 and claudin-5, reducing cerebral edema. Additionally, Takinib effectively suppressed apoptosis via downregulation of cleaved caspase 3 and Bax and reduction of TUNEL-positive stained cell count. As a result, an enhancement of neuronal function and survival was observed post-TBI. These findings highlight the medicinal value of Takinib in the management of TBI and offer an experimental justification for further investigation of TAK1 as a potential pharmacological target.

Keywords: Apoptosis; Inflammation; Neuroprotection; TAK1; TBI; Takinib.