Suppressive Role of Pigment Epithelium-derived Factor in a Rat Model of Corneal Allograft Rejection

Transplantation. 2024 Apr 22. doi: 10.1097/TP.0000000000005032. Online ahead of print.

Abstract

Background: Immunological rejection is the most common reason for corneal transplantation failure. The importance of T cells in corneal allograft rejection is well demonstrated. Recent studies highlight that pigment epithelium-derived factor (PEDF) plays an immunoregulatory role in ocular diseases by enhancing the suppressive phenotype of regulatory T cells besides its other functions in neurotrophy and antiangiogenesis.

Methods: The effects of PEDF on immune rejection were examined in rat models of corneal transplantation using slit-lamp microscope observation, immunohistochemistry, flow cytometry, and Western blot. In vitro, we demonstrated PEDF reduced alloreactive T-cell activation using real-time polymerase chain reaction, flow cytometry, and Western blot.

Results: Topical administration of PEDF provided corneal transplantation rats with an improved graft survival rate of corneal allografts, reduced hemangiogenesis, and infiltration of immune cells in corneas, in particular, type 17 T helper cells while increased regulatory T cells. Moreover, nerve reinnervation within grafts was promoted in PEDF-treated recipient rats. In vitro, PEDF inhibited alloreactive T-cell activation via the c-Jun N-terminal kinase/c-Jun signaling pathway and upregulated the expressions of interleukin-10 and transforming growth factor-β, emphasizing the suppressive role of PEDF on immune responses.

Conclusions: Our results underscore the feasibility of PEDF in alleviating corneal allograft rejection and further illustrate its potential in managing immune-related diseases.