Gender differences in spinal mobility during postural changes: a detailed analysis using upright CT

Sci Rep. 2024 Apr 21;14(1):9154. doi: 10.1038/s41598-024-59840-8.

Abstract

Lumbar spinal alignment is crucial for spine biomechanics and is linked to various spinal pathologies. However, limited research has explored gender-specific differences using CT scans. The objective was to evaluate and compare lumbar spinal alignment between standing and sitting CT in healthy individuals, focusing on gender differences. 24 young and 25 elderly males (M) and females (F) underwent standing and sitting CT scans to assess lumbar spinal alignment. Parameters measured and compared between genders included lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), pelvic incidence (PI), lordotic angle (LA), foraminal height (FH), and bony boundary area (BBA). Females showed significantly larger changes in SS and PT when transitioning from standing to sitting (p = .044, p = .038). A notable gender difference was also observed in the L4-S LA among the elderly, with females showing a significantly larger decrease in lordotic angle compared to males (- 14.1° vs. - 9.2°, p = .039*). Females consistently exhibited larger FH and BBA values, particularly in lower lumbar segments, which was more prominent in the elderly group (M vs. F: L4/5 BBA 80.1 mm2 [46.3, 97.8] vs. 109.7 mm2 [74.4, 121.3], p = .019 in sitting). These findings underline distinct gender-related variations in lumbar alignment and flexibility, with a focus on noteworthy changes in BBA and FH in females. Gender differences in lumbar spinal alignment were evident, with females displaying greater pelvic and sacral mobility. Considering gender-specific characteristics is crucial for assessing spinal alignment and understanding spinal pathologies. These findings contribute to our understanding of lumbar spinal alignment and have implications for gender-specific spinal conditions and treatments.

Keywords: Gender differences; Lumbar alignment; Postural changes; Spinal mobility; Upright CT.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Biomechanical Phenomena
  • Female
  • Humans
  • Lordosis / diagnostic imaging
  • Lordosis / physiopathology
  • Lumbar Vertebrae* / diagnostic imaging
  • Lumbar Vertebrae* / physiology
  • Male
  • Middle Aged
  • Posture / physiology
  • Sex Characteristics
  • Sex Factors
  • Sitting Position
  • Spine / diagnostic imaging
  • Standing Position
  • Tomography, X-Ray Computed* / methods
  • Young Adult