Attenuation of biofilm and virulence factors of Pseudomonas aeruginosa by tetramethylpyrazine-gold nanoparticles

Microb Pathog. 2024 Apr 20:191:106658. doi: 10.1016/j.micpath.2024.106658. Online ahead of print.

Abstract

Pseudomonas aeruginosa is often identified as the causative agent in nosocomial infections. Their adapted resistance makes them strong towards antimicrobial treatments. They protect and empower their survival behind strong biofilm architecture that works as their armor toward antimicrobial therapy. Additionally, P. aeruginosa generates virulence factors, contributing to chronic infection and recalcitrant phenotypic characteristics. The current study utilizes the benevolence of nanotechnology to develop an alternate technique to control the spreading of P. aeruginosa by limiting its biofilm and virulence development. This study used a natural compound, tetramethylpyrazine, to generate gold nanoparticles. Tetramethylpyrazine-gold nanoparticles (Tet-AuNPs) were presented in spherical shapes, with an average size of 168 ± 52.49 nm and a zeta potential of -12.22 ± 2.06 mV. The minimum inhibition concentration (MIC) of Tet-AuNPs that proved more than 90 % effective in inhibiting P. aeruginosa was 256 μg/mL. Additionally, it also shows antibacterial activities against Staphylococcus aureus (MIC, 256 μg/mL), Streptococcus mutans (MIC, 128 μg/mL), Klebsiella pneumoniae (MIC, 128 μg/mL), Listeria monocytogenes (MIC, 256 μg/mL), and Escherichia coli (MIC, 256 μg/mL). The sub-MIC values of Tet-AuNPs significantly inhibited the early-stage biofilm formation of P. aeruginosa. Moreover, this concentration strongly affected hemolysis, protease activity, and different forms of motilities in P. aeruginosa. Additionally, Tet-AuNPs destroyed the well-established mature biofilm of P. aeruginosa. The expression of genes linked with the biofilm formation and virulence in P. aeruginosa treated with sub-MIC doses of Tet-AuNPs was shown to be significantly suppressed. Gene expression studies support biofilm- and virulence-suppressing effects of Tet-AuNPs at the phenotypic level.

Keywords: Antibiofilm; Antivirulence; Gold nanoparticles; Pseudomonas aeruginosa; Tetramethylpyrazine.