Automated liver volumetry and hepatic steatosis quantification with magnetic resonance imaging proton density fat fraction

J Formos Med Assoc. 2024 Apr 19:S0929-6646(24)00212-2. doi: 10.1016/j.jfma.2024.04.012. Online ahead of print.

Abstract

Background: Preoperative imaging evaluation of liver volume and hepatic steatosis for the donor affects transplantation outcomes. However, computed tomography (CT) for liver volumetry and magnetic resonance spectroscopy (MRS) for hepatic steatosis are time consuming. Therefore, we investigated the correlation of automated 3D-multi-echo-Dixon sequence magnetic resonance imaging (ME-Dixon MRI) and its derived proton density fat fraction (MRI-PDFF) with CT liver volumetry and MRS hepatic steatosis measurements in living liver donors.

Methods: This retrospective cross-sectional study was conducted from December 2017 to November 2022. We enrolled donors who received a dynamic CT scan and an MRI exam within 2 days. First, the CT volumetry was processed semiautomatically using commercial software, and ME-Dixon MRI volumetry was automatically measured using an embedded sequence. Next, the signal intensity of MRI-PDFF volumetric data was correlated with MRS as the gold standard.

Results: We included the 165 living donors. The total liver volume of ME-Dixon MRI was significantly correlated with CT (r = 0.913, p < 0.001). The fat percentage measured using MRI-PDFF revealed a strong correlation between automatic segmental volume and MRS (r = 0.705, p < 0.001). Furthermore, the hepatic steatosis group (MRS ≥5%) had a strong correlation than the non-hepatic steatosis group (MRS <5%) in both volumetric (r = 0.906 vs. r = 0.887) and fat fraction analysis (r = 0.779 vs. r = 0.338).

Conclusion: Automated ME-Dixon MRI liver volumetry and MRI-PDFF were strongly correlated with CT liver volumetry and MRS hepatic steatosis measurements, especially in donors with hepatic steatosis.

Keywords: Hepatic steatosis; Liver transplantation; Magnetic resonance imaging; Volumetry.