Epidemiological characteristics of human- and chicken-derived CTX-M-type extended-spectrum β-lactamase-producing Escherichia coli from China

Vet Microbiol. 2024 Jun:293:110072. doi: 10.1016/j.vetmic.2024.110072. Epub 2024 Apr 3.

Abstract

Bacterial resistance to β-lactams is mainly attributed to CTX-M-type extended-spectrum β-lactamases (ESBLs). However, the predominant sequence type (ST) of blaCTX-M-carrying Escherichia coli (blaCTX-M-Ec) in chickens, an important food animal, in China and its contribution to human β-lactam resistance are not investigated. In this study, approximately 1808 chicken-derived strains collected from 10 provinces from 2012 to 2020 were screened for blaCTX-M-Ec, and 222 blaCTX-M-Ec were identified. Antimicrobial susceptibility tests, whole genome sequencing and conjugation experiment were performed. All quality-controlled 136 chicken-derived blaCTX-M-Ec and 1193 human-derived blaCTX-M-Ec genomes were downloaded from NCBI and EnteroBase to comprehensively analyze the prevalence of blaCTX-M-Ec in China. blaCTX-M-55 (153/358, 42.7% in chicken isolates; 312/1193, 26.2% in human isolates) and blaCTX-M-14 (92/358, 25.7% in chicken isolates; 450/1193, 37.7% in human isolates) were dominant in blaCTX-M-Ec. The STs of blaCTX-M-Ec were diverse and scattered, with ST155 (n = 21) and ST152 (n = 120) being the most abundant in chicken- and human-derived isolates, respectively. Few examples indicated that chicken- and human-derived blaCTX-M-Ec have 10 or less core genome single nucleotide polymorphisms (cgSNPs). Genetic environment analysis indicated that ISEcp1, IS26 and IS903B were closely associated with blaCTX-M transfer. The almost identical pc61-55 and pM-64-1161 indicated the possibility of plasmid-mediated transmission of blaCTX-M between humans and chickens. Although the genomes of most blaCTX-M-Ec isolated from chickens and humans were quite different, the prevalence and genetic environment of blaCTX-M variants in both hosts were convergent. CTX-M-mediated resistance is more likely to spread through horizontal gene transmission than bacterial clones.

Keywords: CTX-M; Escherichia coli; Genetic environment; Whole genome sequencing.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Chickens* / microbiology
  • China / epidemiology
  • Escherichia coli Infections* / epidemiology
  • Escherichia coli Infections* / microbiology
  • Escherichia coli Infections* / veterinary
  • Escherichia coli Proteins / genetics
  • Escherichia coli* / drug effects
  • Escherichia coli* / enzymology
  • Escherichia coli* / genetics
  • Escherichia coli* / isolation & purification
  • Humans
  • Microbial Sensitivity Tests
  • Poultry Diseases* / epidemiology
  • Poultry Diseases* / microbiology
  • Whole Genome Sequencing*
  • beta-Lactamases* / genetics

Substances

  • beta-Lactamases
  • Anti-Bacterial Agents
  • Escherichia coli Proteins
  • beta-lactamase CTX-M, E coli