Microliquid/Liquid Interfacial Sensors: Biomimetic Investigation of Transmembrane Mechanisms and Real-Time Determinations of Clemastine, Cyproheptadine, Epinastine, Cetirizine, and Desloratadine

Anal Chem. 2024 Apr 30;96(17):6599-6608. doi: 10.1021/acs.analchem.3c05640. Epub 2024 Apr 19.

Abstract

Antihistamines relieve allergic symptoms by inhibiting the action of histamine. Further understanding of antihistamine transmembrane mechanisms and optimizing the selectivity and real-time monitoring capabilities of drug sensors is necessary. In this study, a micrometer liquid/liquid (L/L) interfacial sensor has served as a biomimetic membrane to investigate the mechanism of interfacial transfer of five antihistamines, i.e., clemastine (CLE), cyproheptadine (CYP), epinastine (EPI), desloratadine (DSL), and cetirizine (CET), and realize the real-time determinations. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have been used to uncover the electrochemical transfer behavior of the five antihistamines at the L/L interface. Additionally, finite element simulations (FEMs) have been employed to reveal the thermodynamics and kinetics of the process. Visualization of antihistamine partitioning in two phases at different pH values can be realized by ion partition diagrams (IPDs). The IPDs also reveal the transfer mechanism at the L/L interface and provide effective lipophilicity at different pH values. Real-time determinations of these antihistamines have been achieved through potentiostatic chronoamperometry (I-t), exhibiting good selectivity with the addition of nine common organic or inorganic compounds in living organisms and revealing the potential for in vivo pharmacokinetics. Besides providing a satisfactory surrogate for studying the transmembrane mechanism of antihistamines, this work also sheds light on micro- and nano L/L interfacial sensors for in vivo analysis of pharmacokinetics at a single-cell or single-organelle level.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomimetics
  • Cetirizine* / analysis
  • Cetirizine* / chemistry
  • Cetirizine* / pharmacology
  • Clemastine* / analysis
  • Clemastine* / metabolism
  • Clemastine* / pharmacology
  • Cyproheptadine* / analogs & derivatives
  • Cyproheptadine* / analysis
  • Cyproheptadine* / pharmacology
  • Dibenzazepines / chemistry
  • Dibenzazepines / pharmacology
  • Electrochemical Techniques / methods
  • Histamine Antagonists / analysis
  • Histamine Antagonists / chemistry
  • Histamine Antagonists / metabolism
  • Histamine Antagonists / pharmacology
  • Imidazoles*
  • Loratadine* / analogs & derivatives*
  • Loratadine* / analysis
  • Loratadine* / chemistry
  • Loratadine* / pharmacology

Substances

  • Loratadine
  • desloratadine
  • Cyproheptadine
  • Cetirizine
  • epinastine
  • Clemastine
  • Histamine Antagonists
  • Dibenzazepines
  • Imidazoles