Floquet Fermi Liquid

Phys Rev Lett. 2024 Apr 5;132(14):146402. doi: 10.1103/PhysRevLett.132.146402.

Abstract

We demonstrate the existence of a nonequilibrium "Floquet Fermi liquid" state arising in partially filled Floquet Bloch bands weakly coupled to ideal fermionic baths, which possess a collection of "Floquet Fermi surfaces" enclosed inside each other, resembling matryoshka dolls. We elucidate several properties of these states, including their quantum oscillations under magnetic fields which feature slow beating patterns of their amplitude reflecting the different areas of the Floquet Fermi surfaces, consistent with those observed in microwave induced resistance oscillation experiments. We also investigate their specific heat and thermodynamic density of states and demonstrate how by controlling properties of the drive, such as its frequency, one can tune some of the Floquet Fermi surfaces toward nonequilibrium Van Hove singularities without changing the electron density.