Obliteration of H. pylori infection through the development of a novel thyme oil laden nanoporous gastric floating microsponge

Heliyon. 2024 Apr 8;10(8):e29246. doi: 10.1016/j.heliyon.2024.e29246. eCollection 2024 Apr 30.

Abstract

Thyme oil (TO) is a valuable essential oil believed to possess a variety of bioactivities, including antibacterial, anticancer, and antioxidant properties. These attributes grant TO the excellent capability to treat a wide range of diseases, particularly the effective eradication of Helicobacter pylori infection in the stomach. However, its practical use is limited by its low stability under atmospheric conditions. Our current research aims to encapsulate TO in eudragit (EGT) microsponges to enhance its stability and improve its effectiveness against H. pylori. The TO microsponges were prepared using EGT as a polymer, polysorbate 80 as a stabilizer, and dichloromethane (DCM) as a solvent via the quasi-emulsion solvent evaporation method. The product yield, particle size, surface morphology, entrapment efficiency, drug-polymer interaction, in-vitro floating, and in-vitro drug release of the microsponges were evaluated. The most promising microsponge was tested against H. pylori ATCC 43504 strains. The results showed that the microsponges exhibited a high product yield (ranging from 41 % ± 0.75-81.27 % ± 1.13), excellent entrapment efficiency (ranging from 63.01 % ± 0.79-88.64 % ± 0.98), prolonged in-vitro floating time (more than 12 h) and sustained in-vitro drug release for 18 h (81.53 %). Scanning electron microscopy results indicated that the microsponges were spherical in shape with a spongy surface. The average particle size of the selected microsponges was determined to be 49.79 ± 1.4 μm, and their average pore size was measured to be 0.81 ± 0.14 μm. DSC study results revealed that TO was physically entrapped in the microsponges. In-vitro anti-H. pylori activity studies demonstrated that TO in microsponge was more effective against H. pylori than pure TO. In conclusion, the developed microsponges containing thyme oil provide a promising alternative for the efficient targeting and eradication of H. Pylori infection.

Keywords: Anti-microbial; H. pylori; Microencapsulation; Stability; Thyme oil.