Mg alloys with antitumor and anticorrosion properties for orthopedic oncology: A review from mechanisms to application strategies

APL Bioeng. 2024 Apr 17;8(2):021504. doi: 10.1063/5.0191800. eCollection 2024 Jun.

Abstract

As a primary malignant bone cancer, osteosarcoma (OS) poses a great threat to human health and is still a huge challenge for clinicians. At present, surgical resection is the main treatment strategy for OS. However, surgical intervention will result in a large bone defect, and some tumor cells remaining around the excised bone tissue often lead to the recurrence and metastasis of OS. Biomedical Mg-based materials have been widely employed as orthopedic implants in bone defect reconstruction, and, especially, they can eradicate the residual OS cells due to the antitumor activities of their degradation products. Nevertheless, the fast corrosion rate of Mg alloys has greatly limited their application scope in the biomedical field, and the improvement of the corrosion resistance will impair the antitumor effects, which mainly arise from their rapid corrosion. Hence, it is vital to balance the corrosion resistance and the antitumor activities of Mg alloys. The presented review systematically discussed the potential antitumor mechanisms of three corrosion products of Mg alloys. Moreover, several strategies to simultaneously enhance the anticorrosion properties and antitumor effects of Mg alloys were also proposed.

Publication types

  • Review