In-situ low-temperature sulfur CVD on metal sulfides with SO2 to realize self-sustained adsorption of mercury

Nat Commun. 2024 Apr 18;15(1):3362. doi: 10.1038/s41467-024-47725-3.

Abstract

Capturing gaseous mercury (Hg0) from sulfur dioxide (SO2)-containing flue gases remains a common yet persistently challenge. Here we introduce a low-temperature sulfur chemical vapor deposition (S-CVD) technique that effectively converts SO2, with intermittently introduced H2S, into deposited sulfur (Sd0) on metal sulfides (MS), facilitating self-sustained adsorption of Hg0. ZnS, as a representative MS model, undergoes a decrease in the coordination number of Zn-S from 3.9 to 3.5 after Sd0 deposition, accompanied by the generation of unsaturated-coordinated polysulfide species (Sn2-, named Sd*) with significantly enhanced Hg0 adsorption performance. Surprisingly, the adsorption product, HgS (ZnS@HgS), can serve as a fresh interface for the activation of Sd0 to Sd* through the S-CVD method, thereby achieving a self-sustained Hg0 adsorption capacity exceeding 300 mg g-1 without saturation limitations. Theoretical calculations substantiate the self-sustained adsorption mechanism that S8 ring on both ZnS and ZnS@HgS can be activated to chemical bond S4 chain, exhibiting a stronger Hg0 adsorption energy than pristine ones. Importantly, this S-CVD strategy is applicable to the in-situ activation of synthetic or natural MS containing chalcophile metal elements for Hg0 removal and also holds potential applications for various purposes requiring MS adsorbents.