In-Depth Proteome Coverage of In Vitro-Cultured Treponema pallidum and Quantitative Comparison Analyses with In Vivo-Grown Treponemes

J Proteome Res. 2024 May 3;23(5):1725-1743. doi: 10.1021/acs.jproteome.3c00891. Epub 2024 Apr 18.

Abstract

Previous mass spectrometry (MS)-based global proteomics studies have detected a combined total of 86% of all Treponema pallidum proteins under infection conditions (in vivo-grown T. pallidum). Recently, a method was developed for the long-term culture of T. pallidum under in vitro conditions (in vitro-cultured T. pallidum). Herein, we used our previously reported optimized MS-based proteomics approach to characterize the T. pallidum global protein expression profile under in vitro culture conditions. These analyses provided a proteome coverage of 94%, which extends the combined T. pallidum proteome coverage from the previously reported 86% to a new combined total of 95%. This study provides a more complete understanding of the protein repertoire of T. pallidum. Further, comparison of the in vitro-expressed proteome with the previously determined in vivo-expressed proteome identifies only a few proteomic changes between the two growth conditions, reinforcing the suitability of in vitro-cultured T. pallidum as an alternative to rabbit-based treponemal growth. The MS proteomics data have been deposited in the MassIVE repository with the data set identifier MSV000093603 (ProteomeXchange identifier PXD047625).

Keywords: Treponema pallidum; global proteomics; mass spectrometry (MS); outer membrane proteins; protein expression profile; syphilis; vaccine candidates.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins* / genetics
  • Bacterial Proteins* / metabolism
  • Mass Spectrometry
  • Proteome* / analysis
  • Proteome* / metabolism
  • Proteomics* / methods
  • Syphilis / metabolism
  • Syphilis / microbiology
  • Treponema pallidum* / metabolism

Substances

  • Proteome
  • Bacterial Proteins