New insight into air pollution-related cardiovascular disease: an adverse outcome pathway framework of PM2.5-associated vascular calcification

Cardiovasc Res. 2024 Apr 18:cvae082. doi: 10.1093/cvr/cvae082. Online ahead of print.

Abstract

Despite the air quality has been generally improved in recent years, ambient fine particulate matter (PM2.5), a major contributor to air pollution, remains one of the major threats to public health. Vascular calcification is a systematic pathology associated with an increased risk of cardiovascular disease. Although the epidemiological evidence has uncovered the association between PM2.5 exposure and vascular calcification, little is known about the underlying mechanisms. The adverse outcome pathway (AOP) concept offers a comprehensive interpretation of all of the findings obtained by toxicological and epidemiological studies. In this review, reactive oxygen species (ROS) generation was identified as the molecular initiating event (MIE), which targeted subsequent key events (KE) such as oxidative stress, inflammation, endoplasmic reticulum (ER) stress, and autophagy, from the cellular to the tissue/organ level. These KEs eventually led to the adverse outcome (AO), namely increased incidence of vascular calcification and atherosclerosis morbidity. To the best of our knowledge, this is the first AOP framework devoted to PM2.5-associated vascular calcification, which benefits future investigations by identifying current limitations and latent biomarkers.

Keywords: Adverse outcome pathway; Air pollution; Fine particulate matter; PM2.5; Vascular calcification.