Identification of biochemical indices for brown spot (Bipolaris oryzae) disease resistance in rice mutants and hybrids

PLoS One. 2024 Apr 18;19(4):e0300760. doi: 10.1371/journal.pone.0300760. eCollection 2024.

Abstract

Brown spot caused by Bipolaris oryzae is a major damaging fungal disease of rice which can decrease the yield and value of produce due to grain discoloration. The objectives of the current study were to investigate and understand the biochemical indices of brown spot disease resistance in rice. A total of 108 genotypes (mutant and hybrid) along with Super Basmati and parent RICF-160 were evaluated against brown spot disease. The genotypes exhibiting resistant and susceptible responses to brown spot disease according to the IRRI standard disease rating scale were screened and selected. To study the biochemical response mechanism, forty five selected genotypes along with Super Basmati and RICF-160 were analyzed using the biochemical markers. The physiological and biochemical analysis provided valuable insights and confirmed the resistance of rice hybrids and mutants against brown spot disease. Positive correlations were observed among stress bio-markers and disease response. Rice genotypes i.e. Mu-AS-8, Mu-AS-19, Mu-AS-20 and Mu-AS-35 exhibited moderate resistant response while Hy-AS-92, Hy-AS-98, Hy-AS-99, Hy-AS-101, Hy-AS-102 and Hy-AS-107 showed resistant response to brown spot disease. Brown spot resistant rice genotypes had lesser values of malondialdehyde and total oxidant status and higher antioxidant activities i.e. superoxide dismutase, peroxidase, total phenolic content and lycopene. The selected resistant rice genotypes had resistance capacity against Bipolaris oryzae stress. In conclusion, identified resistant mutants i.e. Mu-AS-8, Mu-AS-19, Mu-AS-20 and Mu-AS-35 and hybrids i.e. Hy-AS-92, Hy-AS-98, Hy-AS-99, Hy-AS-101, Hy-AS-102 and Hy-AS-107 could be used in rice breeding program to achieve sustainable rice production by coping the emerging challenge of brown spot disease under variable climate conditions.

MeSH terms

  • Bipolaris*
  • Disease Resistance / genetics
  • Ethylenes*
  • Oryza* / genetics
  • Oryza* / microbiology
  • Plant Breeding

Substances

  • ammonium trichloro(dioxoethylene-O,O'-)tellurate
  • Ethylenes

Supplementary concepts

  • Bipolaris oryzae

Grants and funding

The author(s) received no specific funding for this work